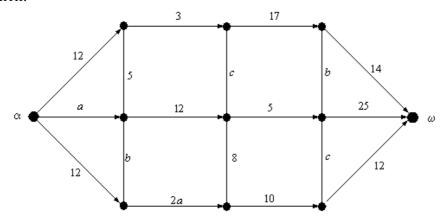
Системный анализ (МПУР)

ТИПОВОЙ РАСЧЕТ №2 «Математическое программирование»

Задача 1. Решить задачу коммивояжера (на минимум) с матрицей затрат

$$\begin{pmatrix}
\infty & 1 & 5 & 12 & 10 \\
1 & \infty & 16 & 4 & b \\
14 & 4 & \infty & 2 & 3 \\
14 & 8 & 9 & \infty & c \\
4 & a & 1 & c & \infty
\end{pmatrix}$$

Bap.	а	b	С	Bap.	а	b	С	Bap.	а	b	С
1	6	5	4	11	4	3	5	21	7	3	5
2	4	1	3	12	5	5	2	22	6	1	8
3	3	2	4	13	8	4	7	23	3	3	3
4	4	4	1	14	5	1	6	24	8	2	2
5	7	4	5	15	2	2	2	25	6	4	5
6	5	2	4	16	6	3	3	26	5	2	5
7	1	1	1	17	6	7	8	27	1	5	3
8	3	4	1	18	6	2	4	28	5	4	3
9	7	6	5	19	2	1	4	29	5	3	4
10	6	2	6	20	7	5	3	30	4	4	4


Задача 2. Максимизировать функцию полезности

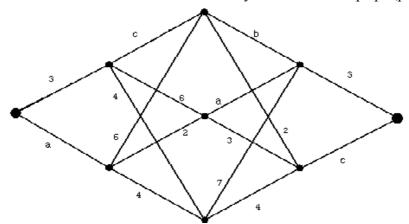
$$U(x_1, x_2, x_3) = (1 + x_1)(1 + x_2)(1 + x_3)$$
 при ограничениях :

$$a_1x_1 + a_2x_2 + a_3x_3 \le 1,$$

 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$

Bap.	a_1	a_2	a_3	Bap.	a_1	a_2	a_3	Bap.	a_1	a_2	a_3
1	3	1.5	1	11	3	2	1.5	21	2	1.5	1
2	3	2.5	2.5	12	1.6	1.3	1.2	22	5	4	3
3	2	1.5	0.7	13	0.9	0.8	0.1	23	1	0.5	0.1
4	6	5	1	14	2	1.6	1.4	24	1.5	1.5	1
5	0.6	0.5	0.1	15	4	3.5	3	25	1	0.8	0.5
6	3	2	0.9	16	1	0.9	0.2	26	2	1.5	1.5
7	0.8	0.6	0.5	17	1.5	1.2	0.2	27	5	4	2
8	2	1.5	0.5	18	0.5	0.4	0.3	28	2	1.6	1.2
9	6	3	3	19	0.4	0.3	0.2	29	3	3	3
10	1.4	0.9	0.9	20	3	2.5	2	30	3	3	2.5

Задача 3. Для данного частично ориентированного графа (рис.1) найти:



- а) Кратчайший путь из источника в сток.
- б) Максимальный поток и минимальный разрез.

По вертикальным ребрам (без стрелок) возможно движение в любом направлении. Значения параметров *a, b, c* взять из таблицы.

Bap.	a	b	c	Bap.	a	b	c	Bap.	a	b	c
1	6	1	6	11	15	5	15	21	10	5	9
2	15	9	9	12	6	1	9	22	15	1	6
3	10	5	15	13	10	9	6	23	6	1	12
4	15	1	6	14	6	5	12	24	10	9	12
5	6	5	15	15	15	5	9	25	15	1	9
6	10	1	9	16	10	9	15	26	10	5	6
7	15	9	6	17	6	9	9	27	6	5	9
8	10	5	12	18	15	5	6	28	15	1	15
9	6	1	15	19	10	1	6	29	6	9	6
10	15	9	1	20	6	5	6	30	10	1	12

Задача 4. Найти максимальный путь в слоистом графе (рис.2).

Значения параметров a, b, c взять из таблицы задачи 1.

Задача 5. В рюкзак объема V = 7 кладут N = 5 групп предметов. Объемы, веса и количество предметов в каждой группе приведены в таблице:

	1	, ,	' 1 2 1	, ,	1
Группа	1	2	3	4	5
Объем	1	2	3	k	1
Bec	2	3	m	4	1
Кол-во	1	n	3	1	2

Максимизировать общий вес рюкзака.

Bap.	k	m	n	Bap.	k	m	n	Bap.	k	m	n
1	1	4	1	11	2	2	2	21	3	3	3
2	1	2	1	12	1	6	2	22	4	1	2
3	3	5	2	13	3	2	2	23	2	1	1
4	3	3	4	14	2	2	1	24	1	2	3
5	2	1	3	15	3	4	2	25	4	4	2
6	2	3	2	16	1	1	1	26	1	1	3
7	1	3	1	17	3	2	2	27	2	2	3
8	3	1	2	18	4	2	3	28	4	2	2
9	3	1	1	19	2	3	4	29	3	3	2
10	4	1	3	20	3	2	1	30	2	5	2

Задача 6. Дана матрица игры с природой, в которой первый игрок стремится максимизировать результат. Исследовать игру по критериям Вальда, Байеса, Сэвиджа и Гурвица. Стратегии природы считать равновероятными, уровень пессимизма игрока принять равным 0.3 (нечетные варианты) или 0.6 (четные варианты). Значения параметров a, b, c взять из таблицы.

$$\begin{pmatrix}
3 & 9 & 8 & 3 \\
a & b & 1 & c \\
4 & 9 & 9 & b \\
5 & 6 & a & 5
\end{pmatrix}$$

Bap.	а	b	С	Bap.	а	b	С	Bap.	а	b	С
1	1	6	4	11	1	7	4	21	1	8	3
2	2	8	2	12	2	7	1	22	2	6	3
3	2	2	1	13	6	6	8	23	3	2	3
4	1	1	2	14	6	3	6	24	1	2	3
5	4	1	3	15	4	2	1	25	6	4	6
6	6	5	7	16	7	8	9	26	8	9	9
7	3	6	1	17	3	7	2	27	3	8	4
8	4	6	2	18	4	7	6	28	4	8	7
9	2	1	1	19	3	2	1	29	3	1	2
10	8	8	9	20	2	2	1	30	7	7	7

Задача 7. Рассматривается антагонистическая игра с той же матрицей.

- (а) Доказать, что в ней отсутствует седловая точка.
- (б) Исключить заведомо невыгодные стратегии.
- (в) Найти решение в смешанных стратегиях.